Tier 1 August 2022
(i) Be sure to fully justify all answers.
(ii) Please write on only one side of each sheet of paper. Begin each problem on a new sheet, and be sure to write a problem number on each sheet of paper.
(iii) Please assemble your test with the problems in the proper order.
(iv) Each problem is worth 11 points.

1. For the sequence $\left\{x_{n}\right\}$ defined by $0<x_{1}<1$ and

$$
x_{n+1}=1-\sqrt{1-x_{n}}, \quad n=1,2,3, \ldots
$$

(a) Prove that the sequence $\left\{x_{n}\right\}$ decreases monotonically to zero as $n \rightarrow \infty$.
(b) Show that $\frac{x_{n+1}}{x_{n}} \rightarrow \frac{1}{2}$ as $n \rightarrow \infty$.
2. Suppose that $\left\{f_{n}\right\}$ is a sequence of increasing, real-valued functions on $[a, b]$. Just using the definitions, show that if $\left\{f_{n}\right\}$ converges pointwise to a continuous function f on $[a, b]$, then $\left\{f_{n}\right\}$ converges uniformly to f on $[a, b]$.
3. Find the value of $\iint_{E} \mathbf{F} \cdot \mathbf{n} d S$ where $\mathbf{F}(x, y, z)=\left(x, z e^{x}, y^{2}\right), E$ is the upper hemisphere $\left\{x^{2}+y^{2}+z^{2}=1, z \geq 0\right\}$, and \mathbf{n} is the outward pointing unit normal vector on the sphere. [Recall that the volume of a 3 D unit ball is $\frac{4}{3} \pi$.]
4.
(a) Suppose $\mathbf{G}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ with component functions $g_{1}\left(x_{1}, x_{2}, x_{3}\right)$ and $g_{2}\left(x_{1}, x_{2}, x_{3}\right)$ satisfies $\mathbf{G}\left(x_{0}, y_{0}, z_{0}\right)=(0,0)$ for some point $\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$. Carefully state under what conditions on \mathbf{G} there exist continuously differentiable functions $\phi: I \rightarrow \mathbb{R}$ and $\psi: I \rightarrow \mathbb{R}$ defined on some open interval $I \ni x_{0}$ such that the set of points satisfying $\left\{\left(x_{1}, x_{2}, x_{3}\right): \mathbf{G}\left(x_{1}, x_{2}, x_{3}\right)=(0,0)\right\}$ in a neighborhood of $\left(x_{0}, y_{0}, z_{0}\right)$ can be expressed as $\left\{\left(x_{1}, \phi\left(x_{1}\right), \psi\left(x_{1}\right)\right): x_{1} \in I\right\}$.
(b) Suppose that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuously differentiable, that $f(1,1)=1$, and

$$
\frac{\partial f}{\partial x_{1}}(1,1) \neq 0, \quad \frac{\partial f}{\partial x_{2}}(1,1) \neq 0, \quad\left(\frac{\partial f}{\partial x_{2}}(1,1)\right)^{2} \neq 1
$$

Show that the system

$$
\begin{aligned}
& f\left(x_{3}, f\left(x_{1}, x_{2}\right)\right)=1 \\
& f\left(f\left(x_{1}, x_{3}\right), x_{2}\right)=1
\end{aligned}
$$

defines functions $x_{2}=\varphi\left(x_{1}\right)$, and $x_{3}=\psi\left(x_{1}\right)$ for x_{1} in a neighborhood of 1 satisfying the system

$$
\begin{aligned}
& f\left(\psi\left(x_{1}\right), f\left(x_{1}, \varphi\left(x_{1}\right)\right)\right)=1 \\
& f\left(f\left(x_{1}, \psi\left(x_{1}\right)\right), \varphi\left(x_{1}\right)\right)=1
\end{aligned}
$$

5. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is Riemann-integrable, and moreover $f(x) \geq \mu$ for all $x \in[a, b]$ for some constant $\mu>0$. Show that $1 / f$ is also Riemann-integrable.
6. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}\frac{x^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Show that f is continuous at the origin.
(b) Show that f has a directional derivative in any direction at the origin.
(c) Decide whether or not f is differentiable at the origin. If it is differentiable, calculate its derivative.
7. Let $f_{n}: \mathbb{R}^{2} \rightarrow \mathbb{R}, n=1,2,3 \ldots$ be a sequence of continuously differentiable functions that converge pointwise to a continuously differentiable function f. In addition, suppose that for each $n \in \mathbb{N}$, the point $(0,0)$ is a local minimum for f_{n}. Is it true that $(0,0)$ is a local minimum for f ? If so, then prove it, and if not, then provide a counterexample with explanation.
8. Carefully establish either the convergence or divergence of the improper integral

$$
\int_{3}^{\infty} \frac{\ln x}{x^{p} \ln (\ln x)} d x \quad \text { where } p \text { is a positive constant. }
$$

Note: Your answer may depend on the value of p.
9. Define a function $F: \mathbb{R} \rightarrow \mathbb{R}$ by the formula

$$
F(x)=\sum_{n=1}^{\infty} n^{-x}
$$

(a) Prove that for any $\delta>0$ this series converges uniformly on the interval $[1+\delta, \infty)$. Explain why this implies F is continuous on the interval $1<x<\infty$. Is F continuous for $1 \leq x<\infty$?
(b) Now prove that F is continuously differentiable on the interval $1<x<\infty$ with

$$
F^{\prime}(x)=-\sum_{n=1}^{\infty} \frac{\ln n}{n^{x}} \quad \text { on this interval. }
$$

You may apply a theorem about the validity of term-wise differentiation of infinite series but be sure to verify its hypotheses.
(Hint: Recall that for any positive real number a and any real number b, one can define a^{b} by the formula $a^{b}=e^{b \ln a}$.)

